Подпишись и читай
самые интересные
статьи первым!

Описание схем работы металлодетекторов PI и VLF. Принципы работы металлоискателей

Металлоискатель – это электронное устройство, предназначенное для обнаружения скрытых металлических предметов за счет обнаружения их проводимости. С его помощью можно найти изделия из металла глубоко в грунте, дереве, под одеждой, в теле человека, пищевых продуктах и т.д. Эти приборы нашли свое применение в различных отраслях промышленности и повседневной жизни.

Где используется металлоискатель

Существует масса разновидностей металлоискателей, корпус которых адаптирован под определенные условия работы. В различных модификациях данные приборы применяются в следующих направлениях:

  • Поиск металла в грунте.
  • Обнаружение археологических ценностей.
  • Досмотр людей для допуска их на ответственные объекты.
  • Контроль качества пищевых продуктов на наличие в них металлической стружки.
  • В медицине для поиска стальных протезов и штифтов у больных, прибывающих в бессознательном состоянии, перед исследованием в МРТ.
  • В военном деле для обнаружения мин и скрытых боеприпасов.

С развитием технологий себестоимость производства металлоискателей существенно снизилась, поэтому данное оборудование стало более доступным для покупателей. Это посодействовало применению металлоискателей в развлекательных целях. Десятки тысяч людей во всем мире используют их для поиска в грунте ценных исторических предметов, таких как монеты, старинные изделия быта, а также остатков военной техники и боеприпасов, потерянных в боях. Также металлоискатели используют для поиска находящегося под землей металла с целью его дальнейшей сдачи на переплавку.

Принцип работы

Для обнаружения металлических предметов используются различные физические принципы, поэтому неудивительно, что металлоискатели по этому критерию разделяются на виды. Они бывают следующими:

  • Индукционные.
  • Импульсные.
  • Частотные.
  • Реагирующие на изменение добротности.

Индукционный металлоискатель работает по принципу приема-передачи. В устройстве может быть одна или две катушки индуктивности. Одна работает как излучатель, а вторая служит приемником. В отдельных случаях обе роли выполняет одна катушка. Излучаемый сигнал проходит сквозь нейтральные предметы (почва, древесина и пр.) и при попадании на металл отбивается обратно, после чего фиксируется чувствительным элементом металлоискателя. Данное оборудование является относительно простым и зачастую может ремонтироваться в домашних условиях. Такие устройства обладают плохой чувствительности на определенных типах грунтов, поэтому эффективно далеко не во всех условиях.

Импульсные металлоискатели возбуждают в зоне поиска импульсные вихревые токи, после чего измеряют вторичное электромагнитное поле. Вихревые токи реагируют на затухающие электромагнитные поля, что обеспечивает более высокую чувствительность, чем у индукционного оборудования. Мощность индикации прибора отличается в зависимости от длины и массы обнаруженного предмета. Такие устройства нечувствительные к сложным грунтам с большой минерализацией. Их главным недостатком является большое потребление энергии, поэтому на одном заряде батареи добиться продолжительной автономной работы невозможно.

Частотный металлоискатель имеет в основе LC-генератор. Он выдает сигналы с различной частотой, которая меняется при приближении к металлическим объектам. Изменения в его работе фиксируются чувствительным оборудованием металлоискателя. Такие устройства имеют простую схему и часто собираются своими руками из недорогих покупных деталей. Их недостатком является малая чувствительность, поэтому оборудования работающего по данному принципу лучше избегать, если требуются сложные поиски.

Металлоискатели, которые фиксируют добротность колебательного контура, работают тоже от LC-генератора. Добротность контура снижается при уменьшении расстояния между катушкой и металлическим предметом. То же самое касается и амплитуды колебаний на самом генераторе. Подобные устройства очень экономичные в плане потребления заряда, поэтому отличаются большой автономностью.

Классификация по выполняемым задачам

По выполняемым задачам металлоискатели принято классифицировать на следующие виды:

  • Грунтовые.
  • Военные.
  • Досмотровые.
  • Глубинные.
  • Магнитометры.

Каждая разновидность адаптирована под определенные условия применения и отличается разной чувствительностью. В связи с этим сравнивать эффективность каждой разновидности между собой неправильно, поскольку их предназначение между собой не пересекается.

Грунтовые

Грунтовые являются самыми распространенными. Они применяются для поиска закрытых в почве кладов, металлолома, старинных монет и потерянных ювелирных изделий. Обычно они работают по индукционной технологии. Данное оборудование может настраиваться для реакции на определенный металл. Самые простые устройства имеют глубину чувствительности в твердых грунтах около 20 см. Более дорогостоящие профессиональные устройства реагируют на объекты находящиеся под слоем грунта высотой в 1 м. Такими устройствами пользуются как профессиональные археологи, так и любители. Довольно часто подобные металлоискатели можно встретить на морских пляжах, поскольку их применяют для поиска потерянных отдыхающими монеток и ювелирных изделий. Специально для этих целей существует влагонепроницаемая модификация металлоискателя, которая может работать под водой, ища предметы на дне.

Военные

Военный металлоискатель также называют миноискатель. Его предназначение заключается в поиске закрытых в грунте мин. Обычно данное оборудование работает по принципу приема-передачи и оснащается двумя катушками. Одна излучает сигнал, а вторая реагирует на колебания, которые получаются в случае его отображения от металлических предметов. Данное оборудование обладает высокой надежностью, но малым диапазоном настройки. Глубина чувствительности такого оборудования аналогична обычным металлоискателям, которые используют археологи и любители. При этом миноискатель не может реагировать на специфические металлы, которые не используются для производства мин. Они чувствительны к стали и никак не отреагируют на находящиеся в грунте золотое кольцо.

Досмотровые

Досмотровые металлоискатели используются службами безопасности для обнаружения на теле человека или в его вещах металлических предметов. Эти устройства можно встретить в аэропортах, при входе в суд, метро и т.д. Данное оборудование зачастую настроено для реакции на крупные металлические предметы. Оно пропускает легкий металл, такой как пряжка поясного ремня или ключи, издавая слабый тихий звуковой сигнал. В том же случае если на досматриваемом имеются тяжелые изделия из металла, прибор дает громкое предупреждение. После этого осуществляется досмотр человека уполномоченным лицом. Главная цель данного оборудования – это обнаружение холодного и огнестрельного оружия.

Самым распространенным досмотровым металлоискателем является оборудование арочного типа. Оно представляет собой металлическую рамку, размером с дверной проем, сквозь которую проходит человек. Рамка реагирует на крупные металлические предметы и предупреждает дежурного.

Кроме арок к группе досмотровых металлоискателей относятся ручные приборы. Они являются довольно компактными и по размеру идентичный обычным бытовым фенам для высушивания волос. С помощью данного оборудования осуществляется поиск предметов на теле или в багаже. Для этого нужно провести по всей поверхности тела или по вещам чувствительной стороной корпуса прибора осуществляя сканирование без пропусков. Чувствительность оборудования обычно не превышает больше 25 см от предмета. Ручной досмотровый металлоискатель требует больше времени на проверку, поэтому используется только при индивидуальном досмотре, поскольку потоковая проходимость людей при применении подобного оборудования будет снижена.

Глубинные

Глубинный металлоискатель обнаруживает объекты на глубине до 3 м. Это довольно массивное оборудование, представляющее собой широкую рамку, на краях которой установлены катушки. Данное оборудование работает по принципу приема-передачи. Первая катушка создает мощный сигнал с большой проникающей способностью, который способен достигнуть изделия из металла сквозь высокий столб грунта, песка, глины или другой породы. Поскольку катушки располагается далеко друг от друга, то принимающая не реагирует на издаваемый направленный сигнал вниз, но при этом может воспринимать отбитые волны.

Подобное оборудования редко применяется любителями поиска металлолома, поскольку вряд ли кто-то захочет откапывать изделие весом 0,5 кг, которое находится на глубине 2 м. Глубинные металлоискатели используются спасателями и профессиональными археологами. Особенность данного оборудования в том, что оно может реагировать не только на металл, но и находящиеся под землей объекты строительства. В частности это фундаменты, поскольку они обычно сделаны из камня. Также металлоискатель глубинного типа способен зафиксировать уплотнение почвы или переход с одной породы на другую.

Магнитометр

Магнитометр представляет собой самую компактную разновидность металлоискателей. Это очень маленькие и чувствительные приборы, которые имеют сканирующую головку меньше ладони. Такие устройства применяются для поиска цветных и драгоценных металлов, таких как золото, алюминий, медь и пр.

1.1. Принципы работы

Металлоискатель по принципу "передача-прием"

Термины "передача-прием" и "отраженный сигнал" в различных поисковых приборах обычно ассоциируются с методами типа импульсной эхо- и радиолокации, что является источником заблуждений, когда речь заходит о ме-таллоискателях. В отличие от различного рода локаторов, в металлоискателях рассматриваемого типа как передаваемый (излучаемый), так и принимаемый (отраженный) сигналы являются непрерывными, они существуют одновременно и совпадают по частоте.

Принцип действия металлоискателей типа "передача-прием" заключается в регистрации сигнала, отраженного (или, как говорят, переизлученного) металлическим предметом (мишенью), см. , стр. 225-228. Отраженный сигнал возникает вследствие воздействия на мишень переменного магнитного поля передающей (излучающей) катушки ме-таллоискателя. Таким образом, прибор данного типа подразумевает наличие как минимум двух катушек, одна из которых является передающей, а другая, приемной.

Основная принципиальная проблема, которая решается в металлоискателях данного типа, заключается в таком выборе взаимного расположения катушек, при котором магнитное поле излучающей катушки в отсутствие посторонних металлических предметов наводит нулевой сигнал в приемной катушке (или в системе приемных катушек). Таким образом, необходимо предотвратить непосредственное воздействие излучающей катушки на приемную. Появление же вблизи катушек металлической мишени приведет к появлению сигнала в виде переменной электродвижущей силы (э.д.с.) в приемной катушке.

Поначалу может показаться, что в природе существуют всего два варианта взаимного расположения катушек, при котором не происходит непосредственной передачи сигнала из одной катушки в другую (см. рис. 1, а и б) - катушки с перпендикулярными и со скрещивающимися осями.

Рис. 1. Варианты взаимного расположения катушек датчика металлоискателя по принципу "передача-прием"

Более тщательное изучение проблемы показывает, что подобных различных систем датчиков металлоискате-лей может быть сколь угодно много. Но это - более сложные системы с количеством катушек больше двух, соответствующим образом включенных электрически. Например, на рис. 1, в изображена система из одной излучающей (в центре) и двух приемных катушек, включенных встречно по сигналу, наводимому излучающей катушкой. Таким образом, сигнал на выходе системы приемных катушек в идеале равен нулю, так как наводимые в катушках э.д.с. взаимно компенсируются.

Особый интерес представляют системы датчиков с компланарными катушками (т.е. расположенными в одной плоскости). Это объясняется тем, что с помощью металлоискателей обычно проводят поиск предметов, находящихся в земле, а приблизить датчик на минимальное расстояние к поверхности земли возможно только в том случае, если его катушки компланарны. Кроме того, такие датчики обычно компактны и хорошо вписываются в защитные корпуса типа "блина" или "летающей тарелки".

Основные варианты взаимного расположения компланарных катушек приведены на рис. 2, а и б. В схеме на рис. 2, а взаимное расположение катушек выбрано таким, чтобы суммарный поток вектора магнитной индукции через поверхность, ограниченную приемной катушкой, равнялся нулю. В схеме рис. 2, б одна из катушек (приемная) скручена в виде "восьмерки", так что суммарная э.д.с, наводимая на половинки витков приемной катушки, расположенные в одном крыле "восьмерки", компенсирует аналогичную суммарную э.д.с, наводимую в другом крыле "восьмерки". Возможны и другие разнообразные конструкции датчиков с компланарными катушками, например рис. 2, е.

Рис. 2. Компланарные варианты взаимного расположения катушек металлоискателя по принципу "передача-прием"

Приемная катушка расположена внутри излучающей. Наводимая в приемной катушке э.д.с. компенсируется специальным трансформаторным устройством, отбирающим часть сигнала излучающей катушки.

Металлоискатель на биениях

Название "металлоискатель на биениях" является отголоском терминологии, принятой в радиотехнике еще со времен первых супергетеродинных приемников. Биениями называется явление, наиболее заметно проявляющееся при сложении двух периодических сигналов с близкими частотами и приблизительно одинаковыми амплитудами и заключающееся в пульсации амплитуды суммарного сигнала. Частота пульсации равна разности частот двух складываемых сигналов. Пропустив такой пульсирующий сигнал через выпрямитель (детектор), можно выделить сигнал разностной частоты. Такая схемотехника долгое время была традиционной, однако в настоящее время она уже не используется ни в радиотехнике, ни в металлоискателях. И там, и там - на смену амплитудным детекторам пришли синхронные детекторы, но термин "на биениях" остался до сих пор.

Принцип действия металлоискателя на биениях очень прост и заключается в регистрации разности частот от двух генераторов, один из которых является стабильным по частоте, а другой содержит датчик - катушку индуктивности в своей частотозадающей цепи. Прибор настраивается таким образом, чтобы в отсутствие металла вблизи датчика частоты двух генераторов совпадали или были очень близки по значению. Наличие металла вблизи датчика приводит к изменению его параметров и, как следствие, к изменению частоты соответствующего генератора. Это изменение, как правило, очень мало, однако изменение разности частот двух генераторов уже существенно и может быть легко зарегистрировано.

Разность частот может регистрироваться самыми различными путями, начиная от простейшего, когда сигнал разностной частоты прослушивается на головные телефоны или через громкоговоритель, и кончая цифровыми способами измерения частоты. Чувствительность металлоискателя на биениях зависит, кроме всего прочего, от параметров преобразования изменения полного сопротивления датчика в частоту.

Обычно преобразование заключается в получении разностной частоты стабильного генератора и генератора с катушкой датчика в частотозадающей цепи. Поэтому, чем выше будут частоты этих генераторов, тем больше будет разность частот в отклик на появление металлической мишени вблизи датчика Регистрация небольших отклонений частоты представляет определенную сложность. Так, на слух можно уверенно зарегистрировать уход частоты тонального сигнала не менее 10 Гц. Визуально, по миганию светодио-да, можно зарегистрировать уход частоты не менее 1 Гц. Другими способами можно добиться регистрации и меньшей разности частот, однако, эта регистрация потребует значительного времени, что неприемлемо для металлоис-кателей, которые всегда работают в реальном масштабе времени.

Селективность по металлам на таких частотах, весьма далеких от оптимальной, проявляется очень слабо. Кроме того, по сдвигу частоты генератора определить фазу отраженного сигнала практически невозможно. Поэтому селективность у металлоискателя на биениях отсутствует.

Металлоискатель по принципу электронного частотомера

Положительной для практики стороной является простота конструкции датчика и электронной части металлоис-кателей на биениях и по принципу частотомера. Такой прибор может быть очень компактным. Им удобно пользоваться, когда что-либо уже обнаружено более чувствительным прибором. Если обнаруженный предмет небольшой и находится достаточно глубоко в земле, то он может "затеряться", переместиться в ходе раскопок. Чтобы по многу раз не "просматривать" громоздким чувствительным металлоискателем место раскопок, желательно на завершающей стадии контролировать их ход компактным прибором малого радиуса действия, которым можно более точно узнать местонахождение предмета.

Однокатушечный металлоискатель индукционного типа

Слово "индукционный" в названии металлоискателей данного типа полностью раскрывает принцип их работы, если вспомнить смысл слова "inductio" (лат.) - наведение. Прибор данного типа имеет в составе датчика одну катушку любой удобной формы, возбуждаемую переменным сигналом. Появление вблизи датчика металлического предмета вызывает появление отраженного (переизлученного сигнала), который "наводит" в катушке дополнительный сигнал -электрический. Остается этот дополнительный сигнал только выделить.

Металлоискатель индукционного типа получил право на жизнь, главным образом, из-за основного недостатка приборов по принципу "передача-прием" - сложности конструкции датчиков. Эта сложность приводит либо к высокой стоимости и трудоемкости изготовления датчика, либо к его недостаточной механической жесткости, что обусловливает появление ложных сигналов при движении и снижает чувствительность прибора.

Рис. 3. Структурная схема входного узла индукционного металлоискателя

Если задаться целью исключить у приборов по принципу "передача-прием" этот недостаток путем устранения самой его причины, то можно прийти к необычному выводу - излучающая и приемная катушки у металлоискателя должны быть объединены в одну! В самом деле, весьма нежелательные перемещения и изгибы одной катушки относительно другой в данном случае отсутствуют, так как катушка только одна и она одновременно и излучающая, и приемная. Налицо также предельная простота датчика. Платой за эти преимущества является необходимость выделения полезного отраженного сигнала на фоне значительно большего сигнала возбуждения излучающей/приемной катушки.

Выделить отраженный сигнал можно, если вычесть из электрического сигнала, присутствующего в катушке датчика, сигнал той же формы, частоты, фазы и амплитуды, что и сигнал в катушке при отсутствии металла вблизи. *Как это можно реализовать одним из способов, показано на рис. 3.

Генератор вырабатывает переменное напряжение синусоидальной формы с постоянной амплитудой и частотой. Преобразователь "напряжение-ток" (ПНТ) преобразует напряжение генератора Ur в ток Iг, который задается в колебательный контур датчика. Колебательный контур состоит из конденсатора С и катушки L датчика. Его резонансная частота равна частоте генератора. Коэффициент преобразования ПНТ выбирается таким, чтобы напряжение колебательного контура ид равнялось напряжению генератора Ur (в отсутствие металла вблизи датчика). Таким образом, на сумматоре происходит вычитание двух сигналов одинаковой амплитуды, а выходной сигнал - результат вычитания -равен нулю. При появлении металла вблизи датчика возникает отраженный сигнал (иными словами, меняются параметры катушки датчика), и это приводит к изменению напряжения колебательного контура 11д. На выходе появляется сигнал, отличный от нуля.

На рис. 3 приведен лишь простейший вариант одной из схем входной части металлоискателей рассматриваемого типа. Вместо ПНТ в данной схеме в принципе возможно использование токозадающего резистора. Могут быть использованы различные мостовые схемы для включения катушки датчика, сумматоры с различными коэффициентами передачи по инвертирующему и неинвертирующему входам, частичное включение колебательного контура и т.д.

В схеме на рис. 3 в качестве датчика используется колебательный контур. Это сделано для простоты, чтобы получить нулевой сдвиг фаз между сигналами Ur и 11д (контур настроен на резонанс). Можно отказаться от колебательного контура с необходимостью точной настройки его на резонанс и использовать в качестве нагрузки ПНТ только катушку датчика. Однако коэффициент передачи ПНТ для этого случая должен быть комплексным, чтобы скорректировать сдвиг фазы на 90°, возникающий из-за индуктивного характера нагрузки ПНТ.

Импульсный металлоискатель

В рассмотренных ранее типах электронных металлоискателей отраженный сигнал отделяется от излучаемого либо геометрически - за счет взаимного расположения приемной и излучающей катушки, либо с помощью специальных схем компенсации. Очевидно, что может существовать и временной способ разделения излучаемого и отраженного сигналов. Такой способ широко используется, например, в импульсной эхо- и радиолокации. При локации механизм задержки отраженного сигнала обусловлен значительным временем распространения сигнала до объекта и обратно.

Применительно к металлоискателям, таким механизмом может быть и явление самоиндукции в проводящем объекте. Как использовать это на практике? После воздействия импульса магнитной индукции в проводящем объекте возникает и некоторое время поддерживается (вследствие явления самоиндукции) затухающий импульс тока, обусловливающий задержанный по времени отраженный сигнал. Он и несет полезную информацию, его и надо регистрировать.

Таким образом, может быть предложена другая схема построения металлоискателя, принципиально отличающаяся от рассмотренных ранее по способу разделения сигналов. Такой металлоискатель получил название импульсного. Он состоит из генератора импульсов тока, приемной и излучающей катушек, которые могут быть совмещены в одну, устройства коммутации и блока обработки сигнала.

Генератор импульсов тока формирует короткие импульсы тока миллисекундного диапазона, поступающие в излучающую катушку, где они преобразуются в импульсы магнитной индукции. Так как излучающая катушка - нагрузка генератора импульсов - имеет ярко выраженный индуктивный характер, на фронтах импульсов у генератора возникают перегрузки в виде всплесков напряжения. Такие всплески могут достигать по амплитуде десятков-сотен (!) вольт, однако использование защитных ограничителей недопустимо, так как оно привело бы к затягиванию фронта импульса тока и магнитной индукции и, в конечном счете, к усложнению отделения отраженного сигнала.

Приемная и излучающая катушки могут располагаться друг относительно друга достаточно произвольно, так как прямое проникновение излучаемого сигнала в приемную катушку и действие на нее отраженного сигнала разнесены по времени. В принципе, одна катушка может выполнять роль как приемной, так и излучающей, однако в этом случае гораздо сложнее будет развязать высоковольтные выходные цепи генератора импульсов тока и чувствительные входные цепи.

Устройство коммутации призвано произвести упомянутое выше разделение излучаемого и отраженного сигналов. Оно блокирует входные цепи прибора на определенное время, которое определяется временем действия импульса тока в излучающей катушке, временем разрядки катушки и временем, в течение которого возможно появление коротких откликов прибора от массивных слабопрово-дящих объектов типа грунта. По истечении же этого времени устройство коммутации должно обеспечить передачу сигнала с приемной катушки на блок обработки сигнала.

Блок обработки сигнала предназначен для преобразования входного электрического сигнала в удобную для восприятия человеком форму. Он может быть сконструирован на основе решений, используемых в металлоискателях других типов. К недостаткам импульсных металлоискателей следует отнести сложность реализации на практике дискриминации объектов по типу металла, сложность аппаратуры генерации и коммутации импульсов тока и напряжения большой амплитуды, высокий уровень радиопомех.

Магнитометры

Магнитометрами называется обширная группа приборов, предназначенных для изменения параметров магнитного поля (например, модуля или составляющих вектора магнитной индукции). Использование магнитометров в качестве металлоискателей основано на явлении локального искажения естественного магнитного поля Земли ферромагнитными материалами, например железом. Обнаружив с помощью магнитометра отклонение от обычного для данной местности модуля или направления вектора магнитной индукции поля Земли, можно с уверенностью говорить о наличии некоторой магнитной неоднородности (аномалии), которая может быть вызвана железным предметом.

По сравнению с рассмотренными ранее металлоискателями, магнитометры имеют гораздо большую дальность обнаружения железных предметов. Очень впечатляет информация о том, что с помощью магнитометра можно зарегистрировать мелкие обувные гвозди от ботинка на расстоянии 1 м, а легковой автомобиль - на расстоянии 10 м! Такая большая дальность обнаружения объясняется следующим. Аналогом излучаемого поля обычных металлоискателей для магнитометров является однородное (в масштабах поиска) магнитное поле Земли. Поэтому отклик прибора на железный предмет обратно пропорционален не шестой, а всего лишь третьей степени расстояния.

Принципиальным недостатком магнитометров является невозможность обнаружения с их помощью предметов из цветных металлов. Кроме того, даже если нас интересует только железо, применение магнитометров для поиска затруднительно - в природе существует большое разнообразие естественных магнитных аномалий самого различного масштаба (отдельные минералы, залежи минералов и т.п.). Однако при поиске затонувших танков и кораблей такие приборы вне конкуренции!

Радиолокаторы

Общеизвестен факт, что с помощью современных радиолокаторов можно обнаружить самолет на расстоянии нескольких сотен километров. Возникает вопрос: неужели современная электроника не позволяет создать компактное устройство, позволяющее обнаруживать интересующее нас предметы хотя бы на расстоянии нескольких метров9 Ответом является ряд публикаций, в которых такие устройства описаны.

Типичным для них является применение достижений современной микроэлектроники СВЧ, компьютерной обработки полученного сигнала. Использование современных высоких технологий практически делает невозможным самостоятельное изготовление этих устройств. Кроме того, большие габаритные размеры пока не позволяют их широко применять в полевых условиях.

К преимуществам радиолокаторов следует отнести принципиально более высокую дальность обнаружения -отраженный сигнал в грубом приближении можно считать подчиняющимся законам геометрической оптики и его ослабление пропорционально не шестой и даже не третьей, а лишь второй степени расстояния.

Ниже мы рассмотрим принипы работы металлоискателей. Но не зависимо от того, с помощью чего прибор обнаруживает метал в земле, все металлоискатели можно разделить на процессорные и аналоговые.

Аналоговые и процессорные металлоискатели

Необходимо сразу понять разницу между этими понятиями, т.к. в литературе происходит путаница и замещение одних слов другими.
Иногда импульсные металлоискатели называют аналоговыми. Это верно, но отчасти.
В чем же разница?
Если металлоискатель имеет процессор, который обрабатывает сигнал, то такой металлоискатель называется процессорным.
Если процессора нет, и сигнал никак не обрабатывается, т.е. идет сразу напрямую оператору (в динамик или наушники), то такой металлоискатель называется аналоговым.

Пример аналогового металлоискателя- Golden Mask 4WD PRO .

Аналоговые металлоискатели не имеют задержек и сообщают оператору в тот момент, когда цель находится под катушкой. А процессорные имеют задержку. Катушка уже в стороне от цели, а сигнал только пришел.

С этой точки зрения аналоговые металлоискатели предпочтительней, но процессор дает больше возможностей по поиску: дополнительные программы поиска, графическое представление, специальная обработка сигнала для отсева нежелательных помех, как от грунта, так и от целей, которые дискриминируются, кроме того выборочная дискриминация (на аналоговых дискриминация последовательная).

Общий принцип действия металлоискателя

В основе всех технологий работы металлоискателя лежит следующий принцип:
катушка металлоискателя генерирует электромагнитные волны
в металлическом объекте под воздействием этих волн возникают собственные вихревые токи
эти вихревые токи порождают собственные электромагнитные волны
эти волны от предмета и регистрирует металлоискатель

PI-металлоискатель (импульсный)

PI-металлоискатель не все время подает сигнал от катушки в грунт. Он использует импульсы. Сначала он подает сигнал, потом молчит и принимает на ту же катушку сигнал от цели.
Понятно, что приходит отраженный сигнал и от грунта. Но от него он затухает быстрее, чем от цели.
Обычная частота работы таких металлоискателей 0т 50 до 400Гц.

TR-металлоискатели

TR-металлоискатели используют при работе 2-е сбалансированные катушки, находящиеся в одной плоскости: одна передает, вторая принимает. Сигнал от первой катушки поступает в грунт, а вторая регистрирует возвращаемя сигнал. По разнице фаз сигнала делается вывод о наличии (или отсутствии) под катушкой цели.
Рабочая частота около 20кГц

VLF/TR - металлоискатели

VLF - Very Low Frequency (Очень низкая частота).
VLF принцип работы металлоискателя является на сегодняшний день самым современным. Это разновидность TR- металлоискателя.
Так же имеется две катушки (но к ним предъявляются более жесткие требования, по согласованности), они так же расположены в одной плоскости, одна передает, другая принимает. по фазовому сдвигу делается вывод о наличии цели.
Рабочая частота от 1 кГц до 10кГц.

RF-металлоискатели

RF - Radio Frequency (радио частота).
Это металлоискатели, работающие на том же принципе, что и TR, только частота работы у них выше: от 50 до 500 кГц. А катушки расположены не в одной плоскости, как это было в VLF и TR, а перпендикулярны и разнесенные на определенное расстояние.
Пример такого металлоискателя - Fisher Gemini-3.
(Данный принцип работы известен давно, с 30-х годов)

BFO-металлоискатели

Такие металлоискатели работают на принципе биений. Старя технология, использовавшаяся в 60-70-х годах.
Есть генератор частоты, есть входящая частота от цели. Производится сравнение 2-х частот. На основании этого делается вывод о наличии цели.
Частота данных приборов от 40 до 500кГц

Достоинства и недостатки различных принципов работы металлоискателей

  • BFO-металлоискатели - не высокая чувствительность, низкая стабильность, проблемная работа на минерализованных и влажных грунтах.
  • TR-металлоискатели - высокая чувствительность, хорошее различение металлов, хорошая балансировка по грунту. Недостаток - при увеличении глубины теряется чувствительность к мелким целям.
  • RF- металлоискатели - крайне слаба чувствительность к мелким целям. Применяется в глубинных металлоискателях.
  • PI-металлоискатели - нечувствительны к грунту, плохое распознавание целей, высокая энергозатратность.
Таким образом из всех перечисленных методов наиболее прогрессивным и современным является VLF.
Соответственно металлоискатели VLF могут быть, как процессорными, так и аналоговыми.

В основе работы миноискателя ИМП лежит принцип индуктивного (или индукционного) баланса. Основа индукционного баланса - несколько катушек индуктивности, одна передающая и одна или две приёмные, образующие индуктивный датчик. Все катушки размещены в пространстве таким образом, что бы сигнал с передающей катушки при отсутствии поблизости металлических предметов не наводился на приёмные (или наводился, но сигнал, наведённый в одной катушке, вычитался бы из сигнала другой катушки), то есть вся система была бы сбалансирована и сигнал на выходе был бы равен нулю. Если теперь поблизости от датчика появится металлический объект, то баланс нарушится и на выходе появится сигнал рассогласования, который можно будет усилить. Более подробно принцип индукционного баланса описан в статье История металлоискателей .

В миноискателе ИМП применён цилиндрический датчик, содержащий три катушки - передающую TX, расположенную в центре датчика, и две приёмные RX (рис. 1.). Все катушки расположены в одной плоскости, обе приёмные катушки размещены симметрично относительно передающей. В тот момент, когда ток в передающей катушке направлен по часовой стрелке, то токи в приёмных катушках будут направлены в противоположную сторону. Это происходит из-за того, что наводки тока между ближайшими частями витков двух рядом находящихся катушек будут сильнее, чем между более удалёнными частями витков катушек.

Рис. 1. Схема расположения катушек в датчике миноискателя ИМП

Для того, что бы получить нулевой сигнал, сигналы с приёмных катушек следует подать на сумматор, как показано на рисунке 2. Здесь обе приёмные катушки включены противофазно - начало одной катушки и конец другой соединены с общим проводом, так что на суммирующий резистор подаются противофазные сигналы, которые взаимно компенсируются. При малейшем нарушении баланса системы на сумматоре появляется сигнал рассогласования, этот сигнал усиливается резонансным усилителем и подаётся на головные телефоны.

Рис. 2. Упрощённая схема металлодетектора, поясняющая принцип индукционного баланса.

В реальной схеме миноискателя ИМП (рис. 3.) используется несколько иной принцип компенсации остаточного сигнала. Здесь вместо суммирующего резистора применён трансформатор, и небольшая часть сигнала с задающего генератора подмешивается в остаточный сигнал. Величину и фазу сигнала, поступающего с задающего генератора можно регулировать переменными резисторами таким образом, что бы этот сигнал был равен по амплитуде и противоположен по фазе остаточному сигналу, так что на выходе системы установится нулевой сигнал.

Рис. 3. Упрощённая схема миноискателя ИМП

Такой способ позволяет компенсировать не только дисбаланс катушек, но и наводки задающего генератора на входные цепи усилителя.

Электронная схема миноискателя ИМП

Рабочая частота миноискателя ИМП - 1,5 кГц. Потребляемый ток - не более 28 мА. Напряжение питания - от 5,0 до 6,2 В (4 элемента 373). Время непрерывной работы от одного комплекта свежих элементов питания - 100 часов.

На рисунке 4 изображена электрическая схема миноискателя. Она состоит из генератора, вырабатывающего частоту 1,5 кГц, устройства компенсации и резонансного усилителя с рабочей частотой 1,5 кГц и с коэффициентом усиления по напряжению примерно 1000 раз.

Генератор выполнен по двухтактной схеме на двух транзисторах Т1 и Т2 типа МП15. Генераторная катушка частично включена в коллекторные цепи транзисторов. Индуктивность передающей катушки составляет 45 мГн, число витков - 970 провода ПЭВ-0,33, отводы сделаны примерно от четверти витков, считая с каждой стороны. Сопротивление обмотки - 13 Ом. Катушка имеет стальной сердечник. Рабочая частота генератора зависит от индуктивности этой катушки и ёмкости конденсатора С1.

Приёмные катушки имеют индуктивность по 400 мГн, они содержат по 3500 витков провода ПЭВ-0,1, намотанного на каркасе диаметром примерно 35 мм.

Использование двухтактного генератора в схеме миноискателя ИМП обусловлено несколькими причинами - во-первых, в то время, когда разрабатывался этот миноискатель, в наличии были только транзисторы одной структуры - p-n-p. Во-вторых, для питания схемы двухтактного генератора на транзисторах одной структуры потребуется меньшее напряжение по сравнению с другими схемами генераторов.

Схема компенсации выполнена на резисторах R1 - R8 и конденсаторах С1 и С2. Переменными резисторами R5, R8 осуществляется грубая регулировка амплитуды и фазы, а резисторами R2, R7 - плавная.

Переменное напряжение поступает в схему компенсации с одного из отводов генераторной катушки.

Рис 4. Принципиальная электрическая схема миноискателя ИМП:
ПК - приёмная катушка - 400 мГн; ГК - генераторные катушки - по 45 мГн; Т1, Т2 - МП15; Т3..Т5 - МП13Б;
R1, R3 - 39к; R2 - 22к; R4,R6 - 4,7мОм; R5 - 100к; R7,R8 - 47к; R9 - 3к; R10 - 6,2к; R11 - 2,2к; R12 - 240; R13 - 5,6к;
R14 - 4,3к; R15 - 10к; R16 - 120; R17,R18 - 8,2к; R19 - 4,3к; R20,R29 - 82; R21,R26 - 4,7к;
R22,R27 - 1к; R23 - 270; R24 - 2,7к; R25 - 39; R28 - 120;
C1 - 5,1пФ; C2 - 27пФ; C3,C4 - 3,3нФ; C5 - 10нФ; C6 - 25мкФ; C7,C9 - 680пФ; C8,C10,C13 - 0,25мкФ; C12 - 3,3нФ;
Тф - Телефоны головные ТА-56М

На транзисторах Т3..Т5 типа МП13Б выполнен резонансный усилитель. Сигнал на его вход поступает со вторичной обмотки понижающего трансформатора Тр, коэффициент трансформации которого составляет примерно 3:1. Так как входное сопротивление первого каскада усилителя, выполненного на транзисторе Т1 относительно невысоко, то применение понижающего трансформатора позволяет согласовать низкоомный вход усилителя с высоким выходным сопротивлением приёмных катушек. Так же осуществляется согласование других каскадов - здесь используются трансформаторы с коэффициентом трансформации 1:8, первичные обмотки которых включены частично в цепи коллекторов транзисторов Т4, Т5. Такое частичное включение (включена 1/4 часть витков) позволяет избежать ухудшения добротности. Совместно с конденсаторами С7, С9 первичные обмотки обоих трансформаторов образуют резонансные контуры, настроенные на частоту 1,5 кГц. Головные телефоны ТА-56М, включённые в коллекторную цепь транзистора Т5 совместно с конденсатором С12 образуют резонансный контур, настроенный на ту же частоту, что позволяет повысить громкость звука в наушниках.

При подаче напряжения питания на схему запускается задающий генератор, и вокруг генераторной катушки образуется переменное магнитное поле. Это поле наводится в обоих приёмных катушках, в результате чего в них начинает течь переменный ток. Приёмные катушки соединены таким образом, что бы токи, протекающие в них, взаимно компенсировались и система была бы сбалансирована. Из-за технических трудностей, не позволяющих изготовить поисковый элемент с идеально правильным взаимным расположением приёмных катушек и из-за разброса величин индуктивностей, во встречно включённых катушках всегда будет присутствовать какой-то остаточный сигнал. Что бы его подавить, применяется схема компенсации.

Если рядом с датчиком миноискателя отсутствуют металлические предметы и системой компенсации подавлен остаточный сигнал, то на входе резонансного усилителя сигнал будет отсутствовать. Если теперь поблизости от поискового датчика появится металлический объект, то из-за возмущения магнитного поля система разбалансируется, и на входе усилителя появится сигнал, который можно будет услышать в наушниках.

Принцип работы металлоискателя

Принцип работы металлоискателя

Как известно, металлоискатель способен обнаруживать присутствие металлических предметов, абсолютно не контактируя с ними. Информирование оператора о наличии металла происходит с помощью специальных сигналов: звука, перемещения стрелки, изменения в показателях индикатора и т.д.

В зависимости от принципа работы можно выделить такие виды металлоискателей:

1. Металлоискатель с электронным частотомером

Принцип работы такого металлоискателя основывается на оценке электронным частотомером частоты измерительного генератора, когда сам датчик еще находится вдали от мишени. Полученное значение «запоминается» регистром. После чего, в процессе поиска интересующих объектов, электронный частотомер занимается беспрерывным измерением частоты принимающего генератора. Из полученных данных вычитается показатель эталонной частоты, а результат выводится на экран индикации.

Схема метал детектора с электронным частотометром

2. Металлоискатель на биениях

Принцип работы металлоискателя на биениях основывается на совокупности разности частот, исходящих от двух генераторов. Один из этих генераторов имеет стабильную частоту, а в систему второго входит датчик, представляющий собой катушку индуктивности. Если металлические предметы не располагаются вблизи металлоискателя, значения частот генераторов в приборе практически совпадают. Наличие же металла возле датчика приводит к резкому изменению частоты генератора.


Схема метал детектора на биениях

Регистрация разности частот может происходить самыми различными путями. Простейшим способом является прослушивание сигнала с помощью головных телефонов или громкоговорителя. Также часто используются цифровые способы измерения колебания частот.

3. Металлоискатели с принципом работы «передача-прием»

Принцип работы такого металлоискателя заключается в регистрации сигнала, который отразился от металлического предмета. Возникновение отраженного сигнала является результатом воздействия магнитного поля с переменным потоком катушки прибора на мишень (предмет из металла). При этом, в структуру прибора входит, как минимум, две катушки, одна из которых «отвечает» за передачу сигнала, а другая – за его прием.

Работа металлоискателя «передача-прием» основывается на определенном взаимо расположении катушек, исключающем воздействие одной на другую. Таким образом, если посторонние металлические предметы отсутствуют, излучающая катушка наводит нулевой сигнал на систему приемной. Появление же металлических предметов вблизи катушек приводит к возникновению специального сигнала.

4. Одно катушечный индукционный металлоискатель

Конструкция датчика данного прибора включает в себя только одну катушку, следящую за частотными изменениями. Если вблизи с металлоискателем появляется мишень, возникает отраженный сигнал. В катушке его «наводит» дополнительный электрический сигнал. Оператору потребуется только выделить этот сигнал. Зарегистрировать отраженный сигнал можно методом вычисления из присутствующего в катушке электрического показателя сигнал аналогичной фазы, частоты, амплитуды, что наблюдался в условиях отсутствия металла поблизости.

В целом, одно катушечный индукционный металлоискатель сочетает в себе характеристики приборов, работающих на биении с аппаратами принципа «передачи-приема». Таким образом, одно катушечный металлоискатель отличается высокой чувствительность и простотой конструкции.

5. Импульсный металлоискатель

Импульсный металлоискатель характеризуется высокой чувствительностью и может использоваться для поиска различных предметов даже на большой глубине. В основу работы такого металлоискателя положен временной метод разделения сигналов излучения и отражения. Такой метод очень часто применяется в эхо- и радиолокации импульсного типа.

Генератором импульсов формируется импульсы тока кратковременного диапазона, которые впоследствии поступают в излучающую катушку. Здесь уже происходит их преобразование в импульсы магнитной индукции. Поскольку генератор импульсов, т.е. излучающая катушка, имеет индуктивный характер, на импульсных фронтах возникают «перегрузки» в форме перепадов в напряжении. Данные всплески могут достигать амплитудных показателей в десятки, а то и сотен вольт. Однако, все же, лучше не использовать защитные ограничители, т.к. может произойти затягивание фронта импульсного тока и магнитной индукции. В результате, усложнится процесс отделения сигнала отражающего типа.


Схема импульсного метал детектора

Следует отметить, что излучающая и приемная катушка могут располагаться в абсолютно произвольном порядке. Это обусловлено тем, что проникновение излучаемого сигнала и влияние на катушку отраженного разнесены по определенным временным промежуткам. Кроме этого, одна и та же катушка может выполнять любую из ролей: как принимать сигнал, так и отражать его.

6. Магнитометры

Магнитометры – приборы, предназначением которых является изменением показателей магнитного поля. При этом, магнитометры могут использоваться и в качестве металлоискателей. Это возможно благодаря тому, что магнитное поле Земли может искажаться различными материалами с ферромагнитными свойствами, например, железом. Обнаружение таких объектов происходит путем регистрации отклонений от исходного для определенной местности модуля магнитного поля. В результате, можно наблюдать некоторую магнитную неоднородность (аномалии), которые как раз и могут быть вызваны предметами из металла.

В отличие от рассмотренных выше металлоискателей, магнитометры охватывают больший диапазон обнаружения железных предметов. Наверное, многим приходилось слышать о нахождении с помощью магнитометра, например, автомобиля, расположенного на расстоянии 10 метров от оператора. В тоже время, главным недостатком магнитометров является их неспособность обнаруживать предметы, изготовленные из цветных металлов. К тому же, магнитометр может реагировать не только на железо, но и на так званые естественные магнитные аномалии. Это могут быть, к примеру, залежи минералов или отдельные минералы и т.д.


Схема магнитометра

7. Радиолокаторы

Принцип работы любого радиолокатора основывается на методе изучения электромагнитной энергии, ее отражения и прием от различных объектов, находящихся в воздухе, на море или земле. Отраженный сигнал принимается для дальнейшей обработки и анализа. В результате, можно безошибочно определить местонахождение интересующего объекта, его скорость и траекторию движения.

Радиолокаторы обладают целым рядом неоспоримых преимуществ. Так, они позволяют работать с достаточно большими расстояниями. Сигнал, который был отражен можно считать таковым, что полностью подчиняется законам геометрической оптики, а его ослабления пропорционально лишь второй степени расстояния. В тоже время, серьезным недостатком радиолокатора является то, что излучая электромагнитные волны, он позволяет обнаружить свое местонахождение. Однако сейчас интенсивно ведется поиск методов, помогающих скрыть сигнатуры радиолокаторов и вполне возможно, что в скором времени удастся избавить от указанного недостатка.

Включайся в дискуссию
Читайте также
Вред от мобильного телефона и способы защиты от излучения
Диагностика и ремонт платы t-con
Выбираем лучший внешний аккумулятор: обзор восьми моделей power bank Power bank с быстрой зарядкой рейтинг